Search results for "fractional derivative"

showing 10 items of 31 documents

The Multiscale Stochastic Model of Fractional Hereditary Materials (FHM)

2013

Abstract In a recent paper the authors proposed a mechanical model corresponding, exactly, to fractional hereditary materials (FHM). Fractional derivation index 13 E [0,1/2] corresponds to a mechanical model composed by a column of massless newtonian fluid resting on a bed of independent linear springs. Fractional derivation index 13 E [1/2, 1], corresponds, instead, to a mechanical model constituted by massless, shear-type elastic column resting on a bed of linear independent dashpots. The real-order of derivation is related to the exponent of the power-law decay of mechanical characteristics. In this paper the authors aim to introduce a multiscale fractance description of FHM in presence …

Multiscale FractanceRandom modelsStochastic modellingMathematical analysisModel parametersGeneral MedicineFractional HereditarinessDashpotFractional calculusMassless particleFractional DerivativesFractional Derivatives; Fractional Hereditariness; Multiscale Fractance; Random modelsFractional HereditarineCalculusExponentNewtonian fluidLinear independenceFractional DerivativeMathematicsProcedia IUTAM
researchProduct

A Novel Mathematical Model For TLCD: Theoretical And Experimental Investigations

2014

In this paper, a novel mathematical model for the Tuned Liquid Column Damper (TLCD) is presented. Taking advantages of fractional derivatives and related concepts, a new equation of motion of the liquid inside the TLCD is obtained. Experimental laboratory tests have been performed in order to validate the proposed linear fractional formulation. Comparison among experimental results, numerical obtained using the classical formulation and numerical with the new linear fractional formulation are reported. Results in frequency domain show how the new linear fractional formulation can predict the real behavior of such a passive vibration control system, more correctly than the classical mathemat…

Mathematical optimizationExperimentalanalysisFrequency domainVibration controlEquations of motionApplied mathematicsFractional derivativeExperimental laboratoryLiquid columnTLCDDamperMathematicsFractional calculus
researchProduct

A mechanical picture of fractional-order Darcy equation

2015

Abstract In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0 ⩽ β ≤ 1 . If, instead, the physical properties of the media show a power-law increase from the control sectio…

Numerical AnalysisAnomalous diffusionApplied MathematicsVolumetric fluxMass flowAnomalous diffusion; Anomalous scaling; Darcy equation; Fractional derivatives; Porous mediaMathematical analysisPorous mediaAnomalous diffusionFluxFractional derivativeViscous liquidDarcy–Weisbach equationFractional calculusModeling and SimulationDarcy equationSettore ICAR/08 - Scienza Delle CostruzioniPorous mediumAnomalous scalingMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Innovative modeling of tuned liquid column damper controlled structures

2016

In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive expe…

EngineeringPassive controlbusiness.industryExperimental investigation020101 civil engineering02 engineering and technologyStructural engineeringFractional derivativeLiquid column0201 civil engineeringComputer Science ApplicationsFractional calculusDamperPassive control020303 mechanical engineering & transports0203 mechanical engineeringControl and Systems EngineeringTuned liquid column damperElectrical and Electronic Engineeringbusiness
researchProduct

Fractional-order theory of heat transport in rigid bodies

2014

Abstract The non-local model of heat transfer, used to describe the deviations of the temperature field from the well-known prediction of Fourier/Cattaneo models experienced in complex media, is framed in the context of fractional-order calculus. It has been assumed (Borino et al., 2011 [53] , Mongiovi and Zingales, 2013 [54] ) that thermal energy transport is due to two phenomena: ( i ) A short-range heat flux ruled by a local transport equation; ( ii ) A long-range thermal energy transfer proportional to a distance-decaying function, to the relative temperature and to the product of the interacting masses. The distance-decaying function is assumed in the functional class of the power-law …

PhysicsNumerical AnalysisField (physics)business.industryApplied MathematicsFractional derivatives; Fractional-order calculus; Fractional-order derivatives; Generalized entropies; Molecular dynamics simulations; Nonlocal; Relative temperatures; Thermal energy transportThermodynamicsContext (language use)Fractional derivativeFractional-order calculuFractional calculusRelative temperatureHeat fluxModeling and SimulationHeat transferGeneralized entropieMolecular dynamics simulationFractional-order derivativeBoundary value problembusinessConvection–diffusion equationNonlocalSettore ICAR/08 - Scienza Delle CostruzioniThermal energyThermal energy transport
researchProduct

On the critical behavior for time-fractional pseudo-parabolic type equations with combined nonlinearities

2022

AbstractWe are concerned with the existence and nonexistence of global weak solutions for a certain class of time-fractional inhomogeneous pseudo-parabolic-type equations involving a nonlinearity of the form $|u|^{p}+\iota |\nabla u|^{q}$ | u | p + ι | ∇ u | q , where $p,q>1$ p , q > 1 , and $\iota \geq 0$ ι ≥ 0 is a constant. The cases $\iota =0$ ι = 0 and $\iota >0$ ι > 0 are discussed separately. For each case, the critical exponent in the Fujita sense is obtained. We point out two interesting phenomena. First, the obtained critical exponents are independent of the fractional orders of the time derivative. Secondly, in the case $\iota >0$ ι > 0 , we show that the gradie…

Algebra and Number TheoryCaputo fractional derivativecritical exponentSettore MAT/05 - Analisi Matematicapseudo-parabolic type equationglobal weak solutionAnalysiscombined nonlinearitie
researchProduct

Finite element method on fractional visco-elastic frames

2016

Viscoelastic behavior is defined by fractional operators.Quasi static FEM analysis of frames with fractional constitutive law is performed.FEM solution is decoupled into a set of fractional Kelvin Voigt elements.Proposed approach could be easily integrated in existing FEM codes. In this study the Finite Element Method (FEM) on viscoelastic frames is presented. It is assumed that the Creep function of the constituent material is of power law type, as a consequence the local constitutive law is ruled by fractional operators. The Euler Bernoulli beam and the FEM for the frames are introduced. It is shown that the whole system is ruled by a set of coupled fractional differential equations. In q…

Finite element methodMechanical EngineeringConstitutive equationMathematical analysis02 engineering and technologyFunction (mathematics)Type (model theory)021001 nanoscience & nanotechnologyFractional calculuPower lawViscoelasticityFinite element methodComputer Science ApplicationsFractional calculus020303 mechanical engineering & transports0203 mechanical engineeringModeling and SimulationFractional viscoelasticityGeneral Materials Science0210 nano-technologySettore ICAR/08 - Scienza Delle CostruzioniQuasistatic processCaputo's fractional derivativeCivil and Structural EngineeringMathematics
researchProduct

Steady-state dynamic response of various hysteretic systems endowed with fractional derivative elements

2019

In this paper, the steady-state dynamic response of hysteretic oscillators comprising fractional derivative elements and subjected to harmonic excitation is examined. Notably, this problem may arise in several circumstances, as for instance, when structures which inherently exhibit hysteretic behavior are supplemented with dampers or isolators often modeled by employing fractional terms. The amplitude of the steady-state response is determined analytically by using an equivalent linearization approach. The procedure yields an equivalent linear system with stiffness and damping coefficients which are related to the amplitude of the response, but also, to the order of the fractional derivativ…

Steady state (electronics)Applied MathematicsMechanical EngineeringMathematical analysisLinear systemAerospace EngineeringBilinear interpolationEquations of motionEquivalent linearizationOcean EngineeringFractional derivative01 natural sciencesHysteretic systemDamperFractional calculusNonlinear systemHysteresisControl and Systems Engineering0103 physical sciencesElectrical and Electronic Engineering010301 acousticsSteady-state responseMathematics
researchProduct

Exact mechanical models of fractional hereditary materials

2012

Fractional Viscoelasticity is referred to materials, whose constitutive law involves fractional derivatives of order β R such that 0 β 1. In this paper, two mechanical models with stress-strain relation exactly restituting fractional operators, respectively, in ranges 0 β 1 / 2 and 1 / 2 β 1 are presented. It is shown that, in the former case, the mechanical model is described by an ideal indefinite massless viscous fluid resting on a bed of independent springs (Winkler model), while, in the latter case it is a shear-type indefinite cantilever resting on a bed of independent viscous dashpots. The law of variation of all mechanical characteristics is of power-law type, strictly related to th…

Hereditary materialMechanical EngineeringMathematical analysisConstitutive equationFractional derivativeType (model theory)Viscous liquidCondensed Matter PhysicsPower lawViscoelasticityDashpotFractional calculusClassical mechanicsMechanical fractancePower-lawsMechanics of MaterialsGeneral Materials ScienceIdeal (ring theory)Settore ICAR/08 - Scienza Delle CostruzioniFractional integralMathematicsJournal of Rheology
researchProduct

FOURIER TRANSFORMS, FRACTIONAL DERIVATIVES, AND A LITTLE BIT OF QUANTUM MECHANICS

2020

We discuss some of the mathematical properties of the fractional derivative defined by means of Fourier transforms. We first consider its action on the set of test functions $\Sc(\mathbb R)$, and then we extend it to its dual set, $\Sc'(\mathbb R)$, the set of tempered distributions, provided they satisfy some mild conditions. We discuss some examples, and we show how our definition can be used in a quantum mechanical context.

Pure mathematicsfractional derivativesGeneral MathematicsMathematical propertiesFOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)Action (physics)Fractional calculusFourier transformsSet (abstract data type)symbols.namesakeFourier transformfractional momentum operatorDual basissymbols46N50QuantumMathematical PhysicsMathematics
researchProduct